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MODELING AND ESTIMATION OF STAGE-SPECIFIC
DAILY SURVIVAL PROBABILITIES OF NESTS
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Abstract. In studies of avian nesting success, it is often of interest to estimate stage-
specific daily survival probabilities of nests. When data can be partitioned by nesting stage
(e.g., incubation stage, nestling stage), piecewise application of the Mayfield method or
Johnson’s method is appropriate. However, when the data contain nests where the transition
from one stage to.the next occurred during the interval between visits, piecewise approaches
are inappropriate. In this paper, I present a model that allows joint estimation of stage-
specific daily survival probabilities even when the time of transition between stages is
unknown. The model allows interval lengths between visits to nests to vary, and the exact
time of failure of nests does not need to be known. The performance of the model at various
sample sizes and interval lengths between visits was investigated using Monte Carlo sim-
ulations, and it was found that the model performed quite well: bias was small and con-
fidence-interval coverage was at the nominal 95% rate. A SAS program for obtaining
maximum likelihood estimates of parameters, and their standard errors, is provided in the

Appendix.
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INTRODUCTION

In the study of avian populations it is often of interest
to estimate nesting success—the probability a nest sur-
vives the nesting period to produce at least one fledg-
ling. In a typical nest-survival study, an area is searched
for active nests. When an active nest is found, the stage
of the nest is recorded (i.e., egg-laying, incubation,
nestling), and often the nest is aged by examining
clutch size (egg-laying stage), candling (Weller 1956)
or floating (Westerkov 1950) the eggs (incubation
stage), or observing feather development in the young
(nestling stage). The nest is then rechecked after an
interval of one or more days, and the fate and stage of
the nest are recorded. Here, ‘‘fate” refers to whether
the nest survived (i.e., at least one egg or nestling re-
main in the still-active nest, or at least one fledgling
was produced) or failed over the interval (failure is the
complement of survival). For nests that survived, the
stage of the nest will be evident, whereas for nests that
failed, the stage at which it failed may be difficult or
impossible to determine. Stage and age information
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gleaned from the first visit can, however, be used in
conjunction with knowledge of the species biology
(e.g., average clutch size, average days incubation) to
determine the stage of the nest that would be expected
had it survived over the interval. Because methods suit-
able for aging nests depend on the species being stud-
ied, and because the focus of this paper is on parameter
estimation and not data collection, methods for aging
nests will not be discussed further. , i

If K active nests are found and monitored to either
fledging or failure during a study, a naive estimator of
nesting success (Mayfield [1961] calls this ‘“‘apparent
success’’) is s/K, where s is the number of nests pro-
ducing at least one fledgling (i.e., a successful nest).
Mayfield (1961, 1975), recognizing this estimator is
positively biased because nests that fail shortly after
initiation are underrepresented in the sample, proposed
instead that the daily survival probability of a nest, p,
be estimated as 1 — (number of nests that fail)/(number
of nest days observed). Nesting success is then esti-
mated as p’, where J is the average number of days in
the nesting period. Johnson (1979), and later Hensler
and Nichols (1981), derived the likelihood for the ex-
perimental situation considered by Mayfield (1961,
1975) and showed that the Mayfield estimator was the
maximume-likelihood estimator.



As originally formulated, the Mayfield method as-
sumes the day a nest fails is known exactly (Heisey
and Nordheim 1995). In practice, this is often not the
case because an interval of several days may pass be-
fore a nest can be rechecked. To address this issue,

Mayfield suggested that exposure days for a nest de- .

stroyed during an interval >1 d be calculated as one-
half the length of the interval (Mayfield 1961, Johnson
1979:654). Later, Miller and Johnson (1978) recom-
mended exposure days for longer intervals (e.g., >7-
10 d) be assigned a value of 40% of the interval be-
tween visits, and Johnson (1979) introduced a model
that accommodated an unknown date of destruction,
without imposing such ad hoc rules.

While the Mayfield estimator is a significant im-
provement over the naive estimator (however, see John-
son and Shaffer [1990]), the assumption that daily sur-
vival probabilities of nests over the nesting period are
constant and homogeneous is restrictive. In an effort
to relax this assumption, it has been suggested that the
Mayfield estimator be applied in a piecewise fashion.
That is, the data are first partitioned into more homog-
enous units, for example, by nest stage (e.g., incubation
vs. nestling) or the experience of the adult (e.g., ex-
perienced vs. first-year breeders) (Mayfield, 1961,
1975, Johnson 1979, Bart and Robson 1982, Klett and
Johnson 1982, Hensler 1985, Heisey and Nordheim
1990), and then Mayfield estimates are obtained for
each partition. Difficulties with this approach arise,
however, when it is not clear to which partition an
observation belongs (Hensler 1985). To illustrate, con-
sider a nest found during the incubation stage and that
candling of the eggs revealed they were close to hatch-
ing. Now suppose the nest was rechecked three or more
days later, but before the young could possibly have
fledged, whereupon it was found the nest had failed.
Should this observation be counted as failure during
the incubation stage, or survival during the incubation
stage and failure during the nestling stage? If the latter,
how should exposure days be allocated among the in-
cubation and nestling stages? This situation is prob-
lematic because there is insufficient information upon
which to make a decision, and arbitrary decisions, such
as censoring the data, can introduce bias (Hensler
1985). Generalized nest-survival models that account
for age-specificity (Pollock and Cornelius 1988, Heisey
and Nordheim 1990) or allow heterogeneity to be mod-
eled using habitat or other covariates (Natarajan and
McCulloch 1999) have been developed. Such models,
however, often require very large sample sizes, and
customized software for applying the models is fre-
quently unavailable. Hence, they are of limited prac-
tical value to field biologists.

In this paper, I describe and evaluate using Monte
Carlo simulations, a new model for estimating daily

survival probabilities of nests that addresses some of
the difficulties inherent in applying other methods. In
particular, the model allows joint estimation of stage-
specific daily survival probabilities even if the exact
time of transition from one stage to the next is un-
known, it makes no ad hoc assumptions regarding the
time of failure of a nest, and it allows time intervals
between visits to nests to vary. Moreover, the param-
eters of the model can be readily estimated using widely
available software (e.g., procedure NLIN, SAS Institute
1989).

DATA AND MODEL

The data required for each active nest found (nests
failing prior to being found are not used) includes the
interval of exposure, f, which is the number of time
units (herein days will be assumed) between finding
and rechecking the nest (re T:t = 1,2,...; T is the
set of observed exposure intervals); the fate of the nest,
y{y = 1 for survived, y = 0 for failed), over the interval
t; and a categorical variable indicating nest type. Nest
type reflects the stage of the nest when it was found
and again when it was rechecked:

Type A—found and rechecked during egg-laying
stage (begins. when the first egg is laid and ends at the
onset of incubation);

Type B—found during egg-laying stage, rechecked
during incubation stage (begins at the onset of incu-
bation and terminates when the first egg hatches);

Type C—found and rechecked during incubation
stage;

Type D—found during incubation stage, rechecked
during nestling stage (begins upon hatching of first egg
and terminates upon fledging of the first young); and

Type E—found and rechecked during nestling stage.
For purposes of developing the model below, it is as-
sumed that ¢ is short enough that an entire stage cannot
be skipped, and that fledging date can be accurately
determined. The latter assumption is necessary to en-
sure that too many exposure days are not credited to a
nest, thereby biasing parameter estimates (the effect of
violating this assumption is reported in Results, below).
It is important to note that nest type is required for all
nests. Hence, in the event a nest fails, sufficient infor-
mation to determine the stage expected after an interval
t must be gathered when the nest is found. Additional
stages (hence, more nest types), or stages that are de-
fined differently, may be specified at the discretion of
the investigator. The model presented below is easily
modified to handle such cases.

For type-A, type-C, and type-E nests, the likelihood
for the data can be constructed from a straightforward
application of Johnson’s (1979) model. We begin by
modeling the survival or failure of a nest over an in-
terval ¢ as a Bernoulli trial with parameter p: P(Y =




y|p) = (p (1 — pH' -, where y is defined above and
p is the daily survival probability of the nest. If we
assume that for nests in the ith stage (i = 0,1,2 foregg-
laying, incubation, and nestling stages, respectively)
daily survival probabilities are homogeneous and con-
stant, and let p; denote this probability, then the full
likelihood for a data set consisting only of type-A, type-
C, and type-E nests would be proportional to:

HT [(poy+(1 = pg)a(pi)ye(l — pi)e(py)se

X (1 = piy#] (1)

where s, is the number of type j nests that survive (j
= A, C, E) and f, is the number of type-j nests that
fail over an interval 7. Using standard maximum-like-
lihood methods (e.g., Larsen and Marx 1986), we can
derive estimators for p; and standard error SE(p,). These
estimators are given in Johnson (1979:655).

When type-B and type-D nests are present, expres-
sion 1 is not an adequate model for the data. This is
because type-B nests contain information on daily sur-
vival probabilities during both the egg-laying and in-
cubation stages, and type-D nests contain information

“on daily survival probabilities during both the incu-
bation and nestling stages that is not accounted for in
expression 1. To model type-B and type-D nests, we
begin by considering the probability such a nest sur-
vives an interval ¢. To illustrate, for a type-B nest the
probability of survival can be modeled as:

P(survival) = P(s|h)P(h,) + P(s|h,)P(h,)
+ ...+ P(s|h_ P, )

where P(s|h,) is the probability the nest survives the
interval ¢ given incubation begins k days after the nest
isfound (k = 1, ... ,t — 1), and P(h,) is the probability
incubation begins k days after it is found. If we assume
the onset of incubation occurs with equal probability
over the ¢t — 1 days following discovery of the nest,
then we can set P(h) = 1/(z — 1) (¢ > 1). Thus,
P(survival) becomes:

1
P(survival) = ——(popi™ + p3pi™* + ... + p'p))

and we get for type-B nests the following expression:
1 -1 sB: 1 —1 fo1
kpyt—k 1 — kpyt—k
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which is proportional to the probability s,, nests survive
and fp, nests fail the interval ¢. The corresponding ex-
pression for type-D nests is similar. Taking the product
over all nest types, the likelihood for the nest-survival
data is proportional to:
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When parameters are constrained so as to be equal (i.e.,
daily survival probabilities are constant across nest
stages so p, = p,; = p,), the likelihood in expression 2
collapses to Johnson’s (1979) model.

Estimators for the model in expression 2, derived
using standard maximum-likelihood methods, are not
closed form and do not simplify to a compact, general
expression. Nonetheless, maximum-likelihood param-
eter estimates can be obtained in a straightforward
manner using iteratively reweighted least squares
(Jennrich and Moore 1975, Green 1984, Burnham
1989). This approach is easily implemented in SAS
using procedure NLIN (SAS Institute 1989), and is
illustrated in the Appendix. Confidence intervals can
be computed after Burnham et al. (1987:214). Once
stage-specific daily survival probabilities and their
standard errors have been estimated, nesting success
over the entire nesting period (P,) is estimated as
P, = p{ p{ p# where J,, J,, and J, are the average
number of days in the egg-laying, incubation, and
nestling stages, respectively. The variance of P, can
be approximated using the delta method (Seber 1982:
7-9; also Hensler 1985).

METHODS

Performance of the model in expression 2 was eval-
uated by examining the effects on parameter estimates
of: (1) number of active nests found (n), (2) interval
length (#), and (3) violating the assumption that fledging
date is known exactly. Nest survival data were gen-
erated using Monte Carlo simulations under a 3 X 3
X 4 X 4 factorial design with p, € {0.90, 0.93, 0.96},
p: € {0.90, 0.93, 0.96}, n € {25, 50, 100, 200}, and
te {1,2,4,8}. One thousand data sets were generated
for each of the 144 possible treatment combinations.
An incubation stage of 14 d and nestling stage of 11
d were chosen for simulation because these are average
values for the Western Meadowlark (Sturnella neglec-
ta) (Baicich and Harrison 1997), and it was data col-
lected for this species (by B.W. Baker, USGS, Fort
Collins, Colorado, USA) that provided the motivation
for this model. Data for the egg-laying stage were not
simulated in this study for two reasons: (1) to reduce




TABLE 1. Effects of sample size (n) on bias (i.e., E[ﬁ — pl) and actual 95% confidence-interval coverage for estimates of
stage-specific daily survival probabilities under the assumption that fledging dates for nests are known, and for violation

of this assumption.

Fledging date known

Fledging date not known

Parameter values Estimated bias

95% c1 coverage

Estimated bias 95% c1 coverage

P P n Py P2 141 P2 Pi- 1243 P P2
0.90 0.90 25 —0.0023 -0.0114 0.954 0.950 —0.0030 —0.00338 0.953 0.958
50 —0.0000 —0.0030 0.960 0.963 —0.0007 0.0048 0.957 0.969
100 —0.0005 —0.0013 0.958 0.962 —0.0011 0.0061 0.956 0.957
0.96 25 -0.0024 -0.0039 0.951 0.942 -0.0030 0.0007 0.952 0.956
50 —0.0015 —-0.0019 0.955 0.951 -0.0019 0.0024 0.953 0.963
100 —0.0009 -0.0009 0.956 0.963 —0.0014 0.0033 0.954 0.973
0.96 0.90 25 —0.0000 —0.0051 0.965 0.961 -0.0005 0.0022 0.960 0.967
50 —0.0011 —0.0018 0.956 0.962 —0.0016 0.0057 0.953 0.961
100 —0.0005 —0.0002 0.956 0.960 —-0.0011 0.0069 0.952 0.947
0.96 25 —0.0008 —0.0010 0.954 0.956 —0.0013 0.0031 0.952 0.967
50 -0.0006 0.0000 0.958 0.961 —0.0011 0.0039 0.956 0.973
100 —0.0003 —0.0002 0.966 0.963 —0.0008 0.0038 0.964 0.960

Notes: Data in each row are means and are pooled over the four time intervals simulated (hence, results in each row are
based on 4000 simulated data sets). The parameters p, and P, are the daily survival probabilities for the incubation and
nestling stages, respectively, under which the data were simulated.

the dimensionality of the simulations, and (2) because
terms in the model for the egg-laying stage are math-
ematically equivalent to those for the nestling stage.
Hence, simulations for the egg-laying stage would be
redundant.

Nest data were simulated by generating a uniform
random variable, u (¥ = 1,...,25), representing the
day a nest was found, then performing a Bernoulli trial
with parameter (p/ip%) to determine whether the nest
was still active on day u. Here, j, (j, = 1,...,14) and
J2 (o = 0,...,11) are the number of days the nest was
in the incubation and nestling stages, respectively, at
the time it was found (j, + j, = u). Given that a nest
was active, nest fate was determined by performing a
Bernoulli trial with parameter (p% p4), where k, (k, =
0,...,0andk, (k; =0, ..., are the number of days
the nest was in the incubation and nestling stages, re-
spectively, during the interval 7 (k, + k, = £). Nest type
was determined by considering the stages in which u
and u + t fell. For example, for u > 14 and u + ¢t >
14 we would get nest type E. For nests with u + ¢ >
26, the number of pre- and post-fledging days in the
interval were recorded so the effect of violating the
assumption that fledging date is known could be eval-
uated. The above steps were repeated until data for n
active nests were generated. To simplify simulations,
nests were checked only once (after ¢ days) following
discovery on day u.

Estimates of p, and p,, and their standard errors, were
obtained using SAS procedure NLIN (SAS Institute
1989) (see Appendix). Ninety-five percent confidence
intervals were computed after Burnham et al. (1987:
214). Model performance was evaluated by estimating

bias (i.e., E[p — p]) of the parameter estimates, and
95% confidence interval coverage.

RESULTS

A total of 144 000 data sets were generated to eval-
uate the properties of the model in expression 2. Below,
a subset of the results are presented that illustrate the
dominant patterns observed.

Under the assumption that fledging date is known,
absolute bias (i.e., | E[p — p]|) of estimates for p, and
P, decreased as sample size (n) increased, and was
small for n = 100. When fledging dates were not
known, absolute bias for estimates of p, likewise de-
creased as n increased, whereas bias for estimates of
D, increased (Table 1). In spite of these increases, the
ratio of absolute bias to standard error was generally
<C0.10 irrespective of n. This suggests the effect of bias
on the accuracy of the estimates was relatively small
(Cochran 1977:12-14). Confidence-interval coverage
for p, and p,, for all levels of n, was close to the nominal
rate of 95%.

The effect of increasing interval length, #, was to
increase absolute bias for both p, and p, regardless of
whether fledging date was known (Table 2). In spite of
this increase, the ratio of absolute bias to standard error
was generally <0.10, indicating the effect of bias on
estimates was relatively small. For t = 8, confidence-
interval coverage for p, and p,, when fledging date is
not known, was less than the nominal rate of 95%.

DiscussioN

The model presented in this paper is a generalization
of Johnson’s (1979) model for estimating daily survival




TaBLE 2. Effects of time interval length (¢) on bias (i.e., E[p — p}) and actual 95% confidence-interval coverage for estimates
of stage-specific daily survival probabilities under the assumption that fledging dates for nests are known, and for violation

of this assumption.

Parameter values

Fledging date known

Fledging date not known

Estimated bias

95% cI coverage

Estimated bias 95% c1 coverage

Pi P2 t 141 143 Py 12 Py 12 P P2

0.90 0.90 1 0.0000 —0.0002 0.965 0.965 0.0001 -0.0002 0.965 0.965
4 -0.0013 —0.0049 0.955 0.959 —0.0016 0.0031 0.955 0.967

8 -0.0013 —0.0060 0.949 0.954 —0.0036 0.0139 0.941 0.927

0.96 1 —0.0001 —0.0005 0.964 0.956 —0.0001 —0.0005 0.964 0.956

4 —0.0017 —0.0021 0.949 0.958 —0.0019 0.0024 0.947 0.969

8 —0.0030 —0.0026 0.942 0.941 —0.0049 0.0086 0.936 0.952

0.96 0.90 1 —0.0007 0.0008 0.960 0.959 —0.0007 0.0008 0.960 0.959
4 —0.0005 —0.0033 0.958 0.957 —0.0007 0.0042 0.956 0.961

8 —0.0004 —0.0021 0.955 0.956 —0.0023 0.0169 0.940 0.890

0.96 1 —0.0001 —0.0005 0.965 0.963 —0.0001 —0.0005- 0.965 0.963

4 —0.0003 —0.0003 0.958 0.953 -0.0005 0.0040 0.958 0.966

8 —0.0008 —0.0003 0.954 0.955 —0.0026 0.0099 0.945 0.925

Notes: Data in each row are means, and are pooled over the four sample sizes simulated (hence, results in each row are
based on 4000 simulated data sets). The parameters p, and p, are the daily survival probabilities for the incubation and

nestling stages, respectively, under which the data were simulated.

probabilities of nests and, when there are no type-B or
type-D nests in the data, it collapses to a piecewise
application of Johnson’s model. Similarly, when nests
are visited daily, the model collapses to a piecewise
application of the Mayfield method.

Under the assumptjon that fledging dates are known
the proposed model performed well, even at small sam-
ple sizes (n) and large interval lengths (2). Bias (i.e.,
E[p — p]) of estimated daily survival probabilities was
usually negative but small, and confidence-interval
coverage was close to the nominal 95% level for the
treatment combinations investigated. It should be noted
that, because simulation results were based on only a
two-parameter model, larger sample sizes will be re-
quired to get comparable levels of accuracy and pre-
cision under the three-parameter model in expression
2. When fledging date was not assumed to be known,
absolute bias increased and confidence-interval cov-
erage decreased for large r. Nevertheless, for t < 4,
these effects were minor and the model does quite well.
A general recommendation would be that, for studies
with 7 > 4, an emphasis be placed on determining (and
checking nests on) the fledging date.

During model development it was assumed that the
onset of incubation (or hatching) occurs with equal
probability over the t — 1 days following discovery of
the nest. Under this assumption P(h) = 1/(t — 1).
However, if different probability structures can be jus-
tified, these can be employed in the model. The only
constraint is that the r — 1 probabilities sum to 1.

In field studies it is not unusual to find data are sparse
for one or more stages. In such cases, the investigator
may wish to consider a submodel that constrains daily
survival probabilities across stages to be equal, so that

data for those stages can be pooled. For example, one
might be willing to assume daily survival probabilities
during the egg-laying and incubation stages are equal
(i.e., py = p)). Parameters under these models, as well
as likelihoods for use in model selection, can be esti-
mated by making slight modifications to the SAS pro-
gram in the Appendix.
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APPENDIX

An SAS program for inputting data and estimating parameters under the model presented in Expression 2, and an inter-
pretation of the output of the program, is available in ESA’s Electronic Data Archive: Ecological Archives E081-021.
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